Processo unimolecular

Um processo unimolecular é um processo no qual uma única molécula reage para se transformar em outra molécula ( isomerização ) ou em várias moléculas ( dissociação ).

Em cinética química , uma etapa unimolecular elementar será de ordem um em relação ao reagente sozinho . Se uma dada reação unimolecular não for experimentalmente de ordem um, deve-se concluir que ela tem mais do que uma etapa elementar. Na prática, muitas reações unimoleculares são de ordem dois , o que é explicado pelo mecanismo de duas etapas de Lindemann - Hinshelwood .

Como exemplo, podemos citar:

Mecanismo Lindemann

A equação geral de uma reação unimolecular pode ser escrita A → P, onde A é uma molécula do reagente inicial e P representa o produto de uma isomerização ou os produtos de uma dissociação.

O mecanismo Lindemann inclui um intermediário de reação A *. Este intermediário é produzido a partir do reagente somente após a aquisição de energia de ativação suficiente por colisão com uma segunda molécula M, que pode ou não ser semelhante a A. Então, há duas possibilidades: ou A * é desativado e se torna A novamente durante outra colisão, ou A * reage em uma etapa unimolecular para formar o (s) produto (s) P.

O mecanismo de duas etapas é então

Equação de velocidade de acordo com a aproximação de estado quase estacionário

A equação para a taxa de formação do produto P pode ser obtida usando a aproximação de estado quase estacionário (AEQS), segundo a qual a concentração do intermediário A * é considerada constante porque suas taxas de formação e consumo são (quase) igual. Essa suposição simplifica o cálculo da equação de velocidade.

Usando o mecanismo Lindemann acima, as constantes de velocidade são definidas como k 1 para a velocidade de avanço do primeiro passo elementar, k -1 para o mesmo passo reverso e k 2 para a velocidade de avanço do segundo passo. Para cada etapa elementar, a ordem da reação é igual à molecularidade .

A taxa de formação do intermediário A * no primeiro estágio elementar é simplesmente

(primeiro passo à frente)

A * é consumido e no primeiro passo para trás e no segundo passo para a frente. As respectivas taxas de consumo de Ä * são:

(primeiro passo ao contrário) (segundo passo à frente)

De acordo com a AEQS, a taxa de formação de A * é igual à taxa de seu consumo, de modo que

Esta equação pode ser resolvida para encontrar o valor de .

A taxa de reação geral é a taxa de formação do produto final (ou produtos finais) P

E, substituindo o valor calculado de [A *], obtemos a velocidade geral como uma função dos reagentes iniciais A e M.

Ordem de reação e etapa determinante da velocidade

A equação de taxa que deriva do AEQS é de ordem mista e prevê que uma reação unimolecular pode ser de primeira ou segunda ordem, o que for maior dos dois termos no denominador. A uma pressão suficientemente baixa, então o que é de segunda categoria. Na verdade, a etapa determinante da taxa é a primeira etapa, que é a ativação bimolecular.

Em pressões mais altas, no entanto, o que é de primeira ordem e o estágio de determinação de velocidade é o segundo estágio, ou seja, a reação unimolecular da molécula ativada.

A teoria pode ser testada através da criação de uma constante (ou coeficiente) de velocidade equivalente seria constante, se a reacção foi primeiro pedido a qualquer pressão: . O mecanismo de Lindemann prevê que k (ou seja, k uni ) diminui em função da pressão, e que seu recíproco é uma função linear de , ou equivalentemente, de . O resultado experimental para muitas reações é que de fato diminui a baixa pressão, mas o gráfico de versus é bastante curvo, ao contrário da teoria simples de Lindemann. Para levar em conta a variação precisa das constantes de velocidade das reações unimoleculares em função da pressão, é necessária uma teoria mais elaborada, como a chamada teoria RRKM (Rice-Ramsperger-Kassel- Marcus) .

Notas e referências

  1. Atkins P. e de Paula J., Physical Chemistry (8ª ed., WH Freeman 2006) p.820-1 ( ISBN  0-7167-8759-8 )
  2. Steinfeld JI, Francisco JS e Hase WL Chemical Kinetics and Dynamics (2ª ed., Prentice-Hall 1999), p.335 ( ISBN  0-13-737123-3 )

Artigos relacionados

<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">