Teorema do resíduo

Na análise complexa , o teorema do resíduo é uma ferramenta poderosa para avaliar integrais curvilíneas de funções holomórficas em curvas fechadas que dependem dos resíduos da função a ser integrada.

É usado para calcular integrais de funções reais , bem como a soma de certas séries . Ele generaliza o teorema da integral de Cauchy e a fórmula da integral de Cauchy .

Estados

Seja U um conjunto aberto e simplesmente conectado ao plano complexo ℂ, { z 1 , ..., z n } um conjunto de n pontos de U , e f uma função definida e holomórfica em U \ { z 1 ,. .., z n }.

Se γ for uma curva retificável em U que não encontra nenhum dos pontos singulares z k e cujo ponto inicial corresponde ao ponto final (ou seja, uma guinada retificável), então:

Aqui, Res ( f , z k ) denota o resíduo de f em z k , e o índice de guinada γ em relação a z k . Intuitivamente, o índice de guinada é o número de voltas em torno de z k feitas por um ponto que atravessa toda a guinada. Este número de voltas é um número inteiro  ; é positivo se γ é atravessado esquerda (na direcção para a frente) em torno de z k , zero se γ não se move em torno de z k de todo , e negativo se γ é atravessada no sentido horário. ponteiros do relógio em torno de z k .

O índice é definido por

Demonstração

Seja F o conjunto de pontos singulares da função f , ou , a função admite uma expansão de Laurent em um determinado disco rombudo com centrado em  :

Deixe a série convergir normalmente nos compactos de definidos pela parte singular da expansão de Laurent de f  :

Considere agora a função holomórfica g em U e definida por:

isto é, a função f menos suas expansões na vizinhança de suas singularidades . Sendo U uma abertura simplesmente conectada , a renda é homotópica em um ponto em U e, portanto,

então nós temos :

Como as séries são normalmente convergentes, podemos escrever:

e nós temos:

onde está o símbolo Kronecker . Usamos o fato de que tem uma primitiva holomórfica para tudo, portanto, a integral acima é zero, exceto para . Nesse caso, encontramos a definição do índice . Ao inserir este resultado na fórmula anterior, obtemos:

ainda por definição do resíduo:

Variante

“Seja D uma esfera de Riemann aberta S 2 , e seja f uma função holomórfica em D, exceto talvez em pontos isolados que são singulares para f . Seja Γ a aresta orientada de um compacto A contido em D, e suponha que Γ não contém nenhum ponto singular de f , nem o ponto no infinito. Os pontos singulares z k contidos em A são então finitos em número, e temos a relação:

onde Res ( f, z k ) denota o resíduo da função f no ponto z k  ; a soma é estendida a todos os pontos singulares z k ∈ A, possivelmente incluindo o ponto no infinito . "

Aplicação ao cálculo de integrais reais

Para avaliar integrais reais , o teorema do resíduo é freqüentemente usado como segue: o integrando é estendido em uma função holomórfica em uma abertura do plano complexo; seus resíduos são calculados e parte do eixo real é estendido para uma curva fechada anexando um semicírculo a ela no semiplano superior ou inferior. A integral ao longo desta curva pode então ser calculada usando o teorema do resíduo. Muitas vezes, graças ao lema de estimação ou lema de Jordan , a parte da integral sobre o semicírculo tende a zero, quando o raio deste tende para o infinito, deixando apenas a parte da integral sobre o eixo real, aquela que inicialmente interessou nós.

A lista abaixo não é exaustiva, mas dá uma ideia geral da técnica usando o teorema do resíduo, que discutimos:

Primeiro tipo

Seja o cálculo do seguinte integral real:

com uma função racional tendo um número finito de pontos singulares e nenhum dos quais pertence ao círculo centrado na origem e de raio 1. Obtemos pelo teorema do resíduo:

onde é definido da seguinte forma:

Demonstração

Tomemos para o contorno o círculo parametrizado da seguinte forma:

Então temos:

onde usamos a fórmula de Euler para ir de exponenciais complexas a funções trigonométricas. Além disso, o teorema do resíduo nos diz que essa integral vale:

onde denota o conjunto (finito) de pontos singulares de pertencer ao disco aberto . Ao igualar as duas últimas relações obtidas, encontramos a identidade inicial.

Exemplo

Problema  : calcule o seguinte integral:

Solução  : estamos nas condições acima mencionadas, portanto temos:

Desenvolvimento  : a função racional correspondente é:

Constrói-se assim a função correspondente para o cálculo do resíduo:

sendo os dois pólos simples:

O pólo está fora do círculo unitário ( ) e, portanto, não deve ser considerado; o pólo está dentro ( ).

O resíduo de neste pólo é:

Agora temos que aplicar a fórmula inicial:

Segundo tipo

Seja o cálculo do seguinte integral real:

com ter um conjunto de pontos singulares isolados puramente complexos. Se existe e tal que para qualquer complexo de módulo maior ou igual a , então

e

Nota  : no caso em que é uma função racional definida por com e polinômios, basta exigir que (onde representa o grau do polinômio) verifique as hipóteses e aplique a identidade.

Demonstração

onde a última desigualdade vem do fato de que .

O argumento é o mesmo para a integral de a . Como a função não tem nenhum ponto singular real, ela é delimitada a partir de e, portanto,

Ao quebrar o contorno em suas duas partes principais, também temos:

No entanto, usando o lema de estimativa , temos:

onde no último limite usamos o fato de que . Ao retomar os relacionamentos anteriores, encontramos a identidade original.

Exemplo

Problema  : calcule o seguinte integral pelo método residual  :

Solução  : esta função tem uma antiderivada real (a função (arctan (x / a)) / a) e a solução imediata é .

Desenvolvimento  : a função admite dois pólos simples . Apenas um desses dois pólos está incluído no plano superior, então temos:

com

Portanto, verificamos isso conforme o esperado.

Terceiro tipo

Seja o cálculo do seguinte integral real:

com compreendendo um conjunto de pontos singulares isolados puramente complexos. Se existe tal que para qualquer complexo de módulo maior ou igual a , então:

e

Demonstração

Suponhamos isso e consideremos o contorno ilustrado na figura 2. O outro caso ( ) é idêntico (tomamos o contorno no semiplano inferior). Vamos supor que este contorno vai desde a e de 0 a . Suponhamos também que , tendendo para o infinito, o contorno irá enquadrar todas as singularidades do semiplano superior com um índice +1. O teorema do resíduo nos dá:

Dividindo a integral em suas quatro partes principais, que serão notadas com a integral ao longo do segmento , ao longo do segmento e simétricas a . representa (em última análise) a integral real que queremos calcular.

Mostramos que, em última análise, a integral ao longo dos três segmentos da função é zero, o que encerra a prova.

Podemos, de fato, aumentar as diferentes partes da seguinte forma:

Usando a hipótese, no entanto, temos:

Como resultado,

O limite quando dessa integral é zero, pois e . O argumento desenvolvido acima é o mesmo para .

Resta que não é muito diferente:

O limite quando é zero desde então .

Isso conclui a demonstração.

Exemplo

Problema  : calcule o seguinte integral:

Solução  : aplicando o resultado acima, obtemos que:

Nota: a parte real da integral é e esta integral é precisamente válida uma vez que a solução pelo teorema do resíduo é real.

Desenvolvimento  : a função tem apenas um pólo no plano superior, viz . O resíduo neste ponto é:

Ao aplicar a fórmula, temos, portanto:

Quarto tipo

As integrais do segundo e do terceiro tipo estendem-se a casos com um número finito n de pólos localizados no eixo real. Trata-se então de uma integral imprópria e, então, considera-se o valor principal de Cauchy da integral.

É uma função holomórfica em ℂ exceto um conjunto de pólos real único e singularidades puramente isoladas complexas . Suponha que estejamos em um dos seguintes casos:

Onde

Então, o valor principal de Cauchy (observado ) da integral existe e um tem:

Nota  : pode-se facilmente estender a fórmula para o semiplano inferior mudando o sinal da primeira soma e considerando apenas as singularidades puramente complexas neste semiplano.

Demonstração

Seja o contorno ilustrado na figura 3, pode-se decompor este contorno em suas partes principais: notemos o semicírculo do raio , o ésimo semicírculo do raio contornando a singularidade real e finalmente , o conjunto de segmentos localizados no eixo real.

Em última análise, quando e , temos:

De acordo com o teorema do resíduo, temos, para suficientemente grande e suficientemente pequeno:

e também temos:

É mostrado de forma idêntica aos dois tipos anteriores de integrações que, em última instância, a integral along tende a zero nos dois casos considerados.

Portanto, temos que calcular as integrais ao longo dos semicírculos . Nas proximidades de um verdadeiro poste simples , admite-se um desenvolvimento de Laurent sobre um disco sem corte centrado em . Por se tratar de um pólo simples, o único coeficiente diferente de zero da parte singular do desenvolvimento é .

Ou seja, neste bairro, podemos escrever:

com uma série inteira (portanto, uma função holomórfica).

Então nós temos :

A segunda integral tende para zero, quando uma vez que é holomórfica. Ao explicar a integral restante, consideramos a seguinte parametrização de semicírculos:

onde o termo vem do fato de que esses contornos são percorridos na direção anti-trigonométrica,

O coeficiente é, por definição, o resíduo da função em . Em última análise, quando e , portanto, temos:

Exemplo

Problema  : calcular, para e real com  :

Solução  : aplicando o resultado acima, obtemos que:

Nota: considerando respectivamente a parte real e imaginária da integral, obtemos:

e no caso particular e , a segunda integral é a integral da função seno cardinal (primeira definição) e vale a pena . Além disso, não se trata de uma integral imprópria, uma vez que a função sinc é definida em todos os lugares.

Desenvolvimento  : a função tem um pólo simples real e o resíduo neste ponto é:

Ao aplicar a fórmula, temos, portanto:

Aplicação a cálculos de somas

O teorema do resíduo também nos permite calcular certas somas infinitas. Seja uma função tendo para cada inteiro um resíduo igual ao i - ésimo termo geral de uma soma infinita , bem como um conjunto de resíduos correspondendo a outros pontos. Suponha que a integral dessa função ao longo de um loop retificável infinitamente grande seja zero. Temos então pelo teorema do resíduo:

Portanto, podemos expressar a soma infinita por outra (geralmente finita) soma de resíduos:

As declarações abaixo fornecem exemplos mais gerais de casos em que este método é aplicável:

Primeiro tipo

Seja o cálculo da seguinte soma:

com ter um conjunto de singularidades isoladas. Suponha que a seguinte condição seja atendida:

ele existe e tal que para qualquer complexo de módulo maior ou igual a .

Então nós temos:

e

Demonstração

Usando o teste integral de convergência, observa-se que essa soma converge. Usamos o mesmo argumento para mostrar que a soma converge. Como evitamos o conjunto de singularidades de na soma, temos que

(soma finita de termos limitados) e, portanto, finalmente:

Na verdade, admite um único zero para cada número inteiro e

onde a fórmula do resíduo foi usada para uma fração com um único zero no denominador.

Tomemos para contorno o círculo centrado na origem e de raio com e o incremento de uma metade mostrando que se evita os pólos localizados em .

Em última análise, o teorema do resíduo fornece:

Agora temos que mostrar que esse limite é zero para obter o resultado desejado. Usando o lema de estimativa , temos:

O módulo da função é limitado por uma certa constante no contorno, uma vez que os inteiros do eixo real são evitados pela escolha do contorno, o lado direito da desigualdade acima é, portanto, limitado por

onde usamos o fato de que . Como o limite é de fato zero, o resultado é demonstrado.

Exemplo

Problema  : calcule a seguinte soma:

para real diferente de zero.

Solução  : aplicando o resultado acima, obtemos que:

Desenvolvimento  : a função cumpre claramente as condições e tem dois pólos simples , por isso temos:

Os resíduos são facilmente calculados, pois são pólos simples e temos:

Então nós temos

e finalmente

onde usamos a fórmula de Euler para ir de funções trigonométricas a exponenciais complexas, bem como a definição da função cotangente hiperbólica .

Nota  : por simetria, temos que:

ou seja, metade da soma calculada anteriormente menos o prazo para . Passando para o limite quando uma se aproxima de 0, e utilizando o desenvolvimento limitado , não é o resultado de Euler  : .

Outro método de cálculo dessas somas pode ser encontrado no artigo Função Digamma .

Segundo tipo

Seja o cálculo da seguinte soma:

com ter um conjunto de singularidades isoladas. Suponha que satisfaça a mesma condição das somas do primeiro tipo, a saber:

existe tal como para qualquer complexo de módulo maior ou igual a .

Portanto, a soma converge absolutamente e temos:

Demonstração

A prova é idêntica à do primeiro tipo, basta mostrar que a função tem para resíduos .

Temos com um único pólo em cada ponto inteiro.

O resíduo de uma fração com um único zero no denominador é dado por:

que conclui a demonstração.

Exemplo

Problema  : calcule a seguinte soma:

Solução  : usando o resultado acima, temos:

Desenvolvimento  : a função cumpre claramente as condições e tem um pólo triplo na origem. A maneira mais fácil de obter o resíduo é usar uma expansão em série em torno da origem:

O resíduo é, por definição, o coeficiente do termo em do desenvolvimento acima, ou seja:

Então nós temos :

onde a última igualdade é obtida considerando a simetria da soma.

Portanto, temos:

Veja também

Notas e referências

  1. Henri Cartan , teoria elementar das funções analíticas de uma ou mais variáveis ​​complexas [ detalhe da edição ], p. 93
<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">